Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Huan Jing Ke Xue ; 44(5): 2430-2440, 2023 May 08.
Article in Chinese | MEDLINE | ID: covidwho-20237414

ABSTRACT

To investigate the change characteristics of secondary inorganic ions in PM2.5 at different pollution stages before and after COVID-19, the online monitoring of winter meteorological and atmospheric pollutant concentrations in Zhengzhou from December 15, 2019 to February 15, 2020 was conducted using a high-resolution (1 h) online instrument. This study analyzed the causes of the haze process of COVID-19, the diurnal variation characteristics of air pollutants, and the distribution characteristics of air pollutants at different stages of haze.The results showed that Zhengzhou was mainly controlled by the high-pressure ridge during the haze process, and the weather situation was stable, which was conducive to the accumulation of air pollutants. SNA was the main component of water-soluble ions, accounting for more than 90%. Home isolation measures during COVID-19 had different impacts on the distribution characteristics of air pollutants in different haze stages. After COVID-19, the concentration of PM2.5 in the clean, occurrence, and dissipation stages increased compared with that before COVID-19 but significantly decreased in the development stage. The home isolation policy significantly reduced the high value of PM2.5. The concentrations of NO2, SO2, NH3, and CO were the highest in the haze development stage, showing a trend of first increasing and then decreasing. The concentration of O3 was lowest in the pre-COVID-19 development stage but highest in the post-COVID-19 development stage. The linear correlation between[NH4+]/[SO42-] and[NO3-]/[SO42-] at different time periods before and after COVID-19 was strong, indicating that the home isolation policy of COVID-19 did not change the generation mode of NO3-, and the corresponding reaction was always the main generation mode of NO3-. The correlation between[excess-NH4+] and[NO3-] was high in different periods before COVID-19, and NO3- generation was related to the increase in NH3 or NH4+ in the process of PM2.5 pollution in Zhengzhou.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Humans , Particulate Matter/analysis , Environmental Monitoring/methods , COVID-19/epidemiology , Respiratory Aerosols and Droplets , Air Pollutants/analysis , Air Pollution/analysis , Ions/analysis , Seasons , China/epidemiology
2.
Particuology ; 78:23-34, 2023.
Article in English | Web of Science | ID: covidwho-2228809

ABSTRACT

To investigate the effect of COVID-19 control measures on aerosol chemistry, the chemical compositions, mixing states, and formation mechanisms of carbonaceous particles in the urban atmosphere of Liaocheng in the North China Plain (NCP) were compared before and during the pandemic using a single particle aerosol mass spectrometry (SPAMS). The results showed that the concentrations of five air pollutants including PM2.5, PM10, SO2, NO2, and CO decreased by 41.2%-71.5% during the pandemic compared to those before the pandemic, whereas O3 increased by 1.3 times during the pandemic because of the depressed titration of O3 and more favorable meteorological conditions. The count and percentage contribution of carbonaceous particles in the total detected particles were lower during the pandemic than those before the pandemic. The carbonaceous particles were dominated by elemental and organic carbon (ECOC, 35.9%), followed by elemental carbon-aged (EC-aged, 19.6%) and organic carbon-fresh (OCfresh, 13.5%) before the pandemic, while EC-aged (25.3%), ECOC (17.9%), and secondary ions-rich (SEC, 17.8%) became the predominant species during the pandemic. The carbonaceous particle sizes during the pandemic showed a broader distribution than that before the pandemic, due to the condensation and coagulation of carbonaceous particles in the aging processes. The relative aerosol acidity (Rra) was smaller before the pandemic than that during the pandemic, indicating the more acidic particle aerosol during the pandemic closely related to the secondary species and relative humidity (RH). More than 95.0% and 86.0% of carbonaceous particles in the whole period were internally mixed with nitrate and sulfate, implying that most of the carbonaceous particles were associated with secondary oxidation during their formation processes. The diurnal variations of oxalate particles and correlation analyses suggested that oxalate particles before the pandemic were derived from aqueous oxidation driven by RH and liquid water content (LWC), while oxalate particles during the pandemic were originated from O3dominated photochemical oxidation.(c) 2022 Chinese Society of Particuology and Institute of Process Engineering, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

3.
J Environ Sci (China) ; 114: 170-178, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-2180480

ABSTRACT

To investigate the characteristics of particulate matter with an aerodynamic diameter less than 2.5 µm (PM2.5) and its chemical compositions in the Beijing-Tianjin-Hebei (BTH) region of China during the novel coronavirus disease (COVID-19) lockdown, the ground-based data of PM2.5, trace gases, water-soluble inorganic ions, and organic and elemental carbon were analyzed in three typical cities (Beijing, Tianjin, and Baoding) in the BTH region of China from 5-15 February 2020. The PM2.5 source apportionment was established by combining the weather research and forecasting model and comprehensive air quality model with extensions (WRF-CAMx). The results showed that the maximum daily PM2.5 concentration reached the heavy pollution level (>150 µg/m3) in the above three cities. The sum concentration of SO42-, NO3- and NH4+ played a dominant position in PM2.5 chemical compositions of Beijing, Tianjin, and Baoding; secondary transformation of gaseous pollutants contributed significantly to PM2.5 generation, and the secondary transformation was enhanced as the increased PM2.5 concentrations. The results of WRF-CAMx showed obviously inter-transport of PM2.5 in the BTH region; the contribution of transportation source decreased significantly than previous reports in Beijing, Tianjin, and Baoding during the COVID-19 lockdown; but the contribution of industrial and residential emission sources increased significantly with the increase of PM2.5 concentration, and industry emission sources contributed the most to PM2.5 concentrations. Therefore, control policies should be devoted to reducing industrial emissions and regional joint control strategies to mitigate haze pollution.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Air Pollutants/analysis , Air Pollution/analysis , Beijing , COVID-19/epidemiology , China/epidemiology , Communicable Disease Control , Environmental Monitoring , Humans , Particulate Matter/analysis
4.
Frontiers in Environmental Science ; 10, 2022.
Article in English | Web of Science | ID: covidwho-2083024

ABSTRACT

A series of lockdown measures in response to the Corona Virus Disease 2019 (COVID-19) outbreak resulted in a drop in anthropogenic emissions and changes in concentrations of PM2.5 and O-3. Backward trajectories analysis, cluster analysis, potential source contribution function (PSCF) and concentration weighted trajectory (CWT) technologies were conducted to reveal the characteristics and potential source areas of pollutants in Beijing before the COVID-19 outbreak (BCO period), during the outbreak (COB period) and after the outbreak (ACO period), as well as the contemporaneous period in 2019 (CCO period), which is critical for exploring the efficient control measures and making policy. The results indicated that despite the significant reduction in anthropogenic emissions during the epidemic, the PM2.5 concentrations increased by 1.0% caused by unfavorable meteorological conditions. O-3 concentrations increased by 174.8% compared to that during the BCO period due to the increased temperature and inappropriate precursor reduction ratios. A considerable decrease of NO3- in PM2.5 was observed under the influence of significant reductions in vehicle emissions during the lockdown. The cluster analysis revealed that short-range transport played a significant role in the accumulation of local PM2.5 pollution, while long-range northwest airflows contributed more to O-3 accumulation, and weakened as the season changed. The PSCF and CWT analysis demonstrated that potential source areas of PM2.5 were mostly located in the central and southern Hebei, the southwestern Shandong in the CCO period, and expanded to central Inner Mongolia and northern Shanxi in the COB period. These areas were highly compatible with the high emission areas of the emission inventory statistics. After the outbreak, the source areas of O-3 were centered in the Beijing-Tianjin-Hebei region and Shandong province, with a radial dispersion in all directions, while they were distributed in the central Mongolia and Inner Mongolia during the other periods.

5.
Atmosphere ; 13(9), 2022.
Article in English | Web of Science | ID: covidwho-2071181

ABSTRACT

In this study, the levels of fine particulate matter (PM2.5), polycyclic aromatic hydrocarbons (PAHs) and nitro-PAHs (NPAHs) in PM2.5 samples were determined from 2020 to 2021 in Singapore. For analysis convenience, the sampling period was classified according to two monsoon periods and the inter-monsoon period. Considering Singapore's typically tropical monsoon climate, the four seasons were divided into the northeast monsoon season (NE), southwest monsoon season (SW), presouthwest monsoon season (PSW) and prenortheast monsoon season (PNE)). The PM2.5 concentration reached 17.1 +/- 8.38 mu g/m(3), which was slightly higher than that in 2015, and the average PAH concentration continuously declined during the sampling period compared to that reported in previous studies in 2006 and 2015. This is the first report of NPAHs in Singapore indicating a concentration of 13.1 +/- 10.7 pg/m(3). The seasonal variation in the PAH and NPAH concentrations in PM2.5 did not obviously differ owing to the unique geographical location and almost uniform climate changes in Singapore. Diagnostic ratios revealed that PAHs and NPAHs mainly originated from local vehicle emissions during all seasons. 2-Nitropyrene (2-NP) and 2-nitrofluoranthene (2-NFR) in Singapore were mainly formed under the daytime OH-initiated reaction pathway. Combined with airmass backward trajectory analysis, the Indonesia air mass could have influenced Singapore's air pollution levels in PSW. However, these survey results showed that no effect was found on the concentrations of PAHs and NPAHs in PM2.5 in Indonesia during SW because of Indonesia's efforts in the environment. It is worth noting that air masses from southern China could impact the PAH and NPAH concentrations according to long-range transportation during the NE. The results of the total incremental lifetime cancer risk (ILCR) via three exposure routes (ingestion, inhalation and dermal absorption) for males and females during the four seasons indicated a low long-term potential carcinogenic risk, with values ranging from 10(-10) to 10(-7). This study systematically explains the latest pollution conditions, sources, and potential health risks in Singapore, and comprehensively analyses the impact of the tropical monsoon system on air pollution in Singapore, providing a new perspective on the transmission mechanism of global air pollution.

6.
Environ Pollut ; 315: 120408, 2022 Dec 15.
Article in English | MEDLINE | ID: covidwho-2068946

ABSTRACT

Large reductions in anthropogenic emissions during the Chinese New Year (CNY) holiday in Beijing have been well reported. However, the changes during the CNY of 2021 are different because most people stayed in Beijing to control the spread of coronavirus disease (COVID-19). Here a high-resolution aerosol mass spectrometer (HR-AMS) was deployed for characterization of the changes in size-resolved aerosol composition and sources during the CNY. We found that the reductions in traffic-related NOx and fossil fuel-related organic aerosol (OA), and cooking OA (1.3-12.7%) during the CNY of 2021 were much smaller than those in previous CNY holidays of 2013, 2015, and 2020. In contrast, the mass concentrations of secondary aerosol species except nitrate showed ubiquitous increases (17.6-30.4%) during the CNY of 2021 mainly due to a 4-day severe haze episode. OA composition also changed substantially during the CNY of 2021. In particular, we observed a large increase by nearly a factor of 2 in oxidized primary OA likely from biomass burning, and a decrease of 50.1% in aqueous-phase secondary OA. A further analysis of the severe haze episode during the CNY illustrated a rapid transition of secondary formation from photochemical to aqueous-phase processing followed by a scavenging process, leading to significant changes in aerosol composition, size distributions, and oxidation degree of OA. A parameterization relationship between oxygen-to-carbon (O/C) and f44 (fraction of m/z 44 in OA) from a collocated capture vaporizer aerosol chemical speciation monitor (CV-ACSM) was developed, which has a significant implication for characterization of OA evolution and the impacts on hygroscopicity due to the rapidly increased deployments of CV-ACSM worldwide.


Subject(s)
Air Pollutants , COVID-19 , Humans , Particulate Matter/analysis , Air Pollutants/analysis , Respiratory Aerosols and Droplets , Beijing , Environmental Monitoring
7.
SN Appl Sci ; 4(10): 257, 2022.
Article in English | MEDLINE | ID: covidwho-2007347

ABSTRACT

Abstract: This article presents the design and fabrication of an air purifier that uses a water-based technique to clean indoor/outdoor transitional air to provide a low-tech air purifier against the annual smog crisis and the ongoing COVID-19 pandemic. The air purifier was designed and built. All tests were conducted in a closed room as well as a semi-outdoor area. Particle sizes of PM0.3, 0.5, 1.0, 3.0, 5.0, and 10 µm (particle/m3) were measured at an air inlet, air outlet, 2 m from an air inlet, and 4 m from an air outlet after 0, 5, 10, 15, and 20 min of air treatment, respectively, as well as CO2 levels and relative humidity (RH). The average airflow rate was also measured. When compare to 0 min, all parameters, except semi-outdoor PM0.3 and CO2 levels, tend to decrease in both indoor and semi-outdoor conditions. When measure by total airflow specification of a dual ventilation fan, the average airflow rate at an air outlet is reduced by 20 times. Article Highlights: Design and fabrication of a water-based air purifier.A low-tech air purifier helping to protect against the annual smog crisis and the ongoing COVID-19 pandemic.The novel water-based air purifier effectively traps air particles ranging in size from 0.5 to 10 µm.

8.
Atmosphere ; 13(7):18, 2022.
Article in English | Web of Science | ID: covidwho-1987635

ABSTRACT

PM2.5 and PM10 in the atmosphere seriously affect human health and air quality, a situation which has aroused widespread concern. In this paper, we analyze the temporal and spatial distribution of PM2.5 and PM10 concentrations from 2016 to 2021 based on real-time monitoring data. In addition, we also explore the influence of meteorological conditions on pollutants. The results show that PM2.5 and PM10 concentrations are similarly distribution in temporal and spatial from 2016 to 2021, and the average concentrations of both show a decreasing trend. The ratio of PM2.5 to PM10 is decreasing, indicating that the proportion of fine particles is declining. PM2.5 and PM10 concentrations are higher in spring and winter, but lower in summer. Spatially, it shows a gradual shift from the characteristic of "high in the south and low in the north" to a uniform homogenization across districts. The spatial distribution of PM2.5 and PM10 mass concentrations is synchronous by applying empirical orthogonal functions (EOF). The first EOF pattern exhibits a consistent characteristic of high in the southeast and low in the northwest. The second pattern EOF reflects the effect of impairing PM2.5 concentrations in the southeast during the winter of 2016-2018. The PM2.5 and PM10 concentrations are significantly negatively correlated with wind speed and precipitation in both spring and winter. On the other hand, from the perspective of the circulation situation, the southeasterly and weak westerly wind in spring produce convergence resulting in higher particulate matter concentrations in the south than in the north in Beijing. The westerly wind is flatter at 700 hPa geopotential height, which is conducive to the formation of stationary weather. The vertical direction of airflow in spring and winter is dominated by convergence and sinking, indicating the weak dispersion ability of the atmosphere. The reason for the accumulation of particulate matter at the surface is investigated, which is beneficial to provide the theoretical basis for air quality management and pollution control in Beijing.

9.
Journal of the Brazilian Chemical Society ; 2022.
Article in English | Web of Science | ID: covidwho-1939538

ABSTRACT

This study evaluated the pollutant levels (NO2, SO2, CO, and O-3), air quality index (AQI) and the influence of meteorological variables and coronavirus disease (COVID-19) pandemic on the air quality in Rio de Janeiro. The data set used comprises periods before (March-April, 2019) and during pandemic (March-April, 2020). According to the AQI results, on most days, the air quality was ranked as "good". Brazilian air quality standards for SO2, O-3, and NO2 were not exceeded in any of the monitoring stations during partial lockdown, while CO exceeded in all periods in one site due to industrial emission. Comparing both periods, descriptive statistics for the meteorological parameters presented no differences, which suggests similar conditions. However, when evaluated week by week in 2020, weather conditions presented some differences that probably affected pollutant concentrations. The correlations between O-3 and NO2 and some meteorological parameters indicate that variations in both favored ozone formation, since it is a photochemical process favored by temperature and solar radiation and that, in Rio de Janeiro, low NO2 concentrations lead to increased O-3. The improvements on air quality during the partial lockdown may be attributed mainly to a reduction on emission sources rather than weather conditions.

10.
FRONTIERS IN ENVIRONMENTAL SCIENCE ; 10, 2022.
Article in English | Web of Science | ID: covidwho-1911030

ABSTRACT

Changzhou, a typical industrial city located in the center of the Yangtze River Delta (YRD) region, has experienced serious air pollution in winter. However, Changzhou still receives less attention compared with other big cities in YRD. In this study, a four-month PM2.5 sampling campaign was conducted in Changzhou, China from 1 November 2019, to 1 February 2020. The period covers the entire wintertime and includes first week of the Level 1 response stage of the lockdown period due to the outbreak of COVID-19. The mean PM2.5 concentrations were 67.9 +/- 29.0 mu gm(-3), ranging from 17.4 to 157.4 mu gm(-3). Secondary inorganic ions were the most abundant species, accounting for 37 and 50% during the low and high PM2.5 pollution periods, respectively. Nitrogen oxidation ratio (NOR) during the high PM concentration level period was twice the low PM concentration period whereas sulfur oxidation ratio (SOR) showed a less significant increase. This represents that nitrate formation is potentially the predominant factor controlling the occurrence of PM pollution. The analysis of NOR, SOR as functions of relative humidity (RH) and ozone (O-3) concentrations suggest that the sulfate formation was mainly through aqueous-phase reaction, while nitrate formation was driven by both photochemistry and heterogeneous reaction. And, excess ammonium could promote the formation of nitrate during the high PM period, indicating that ammonia gas played a critical role in regulating nitrate. Furthermore, a special period-Chinese New Year overlapping first week of COVID-19 lockdown period, offered a precious window to study the impact of human activity pattern changes on air pollution variation. During the special period, the average PM2.5 mean concentration was 60.4 mu gm(-3), which did not show in a low value as expected. The declines in nitrogen oxide (NOx) emissions led to rapid increases in O-3 and atmospheric oxidizing capacity, as well as sulfate formation. The chemical profiles and compositions obtained during different periods provide a scientific basis for establishing efficient atmospheric governance policies in the future.

11.
Chemosphere ; 305: 135489, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-1906853

ABSTRACT

The formation of secondary aerosol species, including nitrate and sulfate, induces severe haze in the North China Plain. However, despite substantial reductions in anthropogenic pollutants due to severe restriction of residential and industrial activities in 2020 to stop the spread of COVID-19, haze still formed in Zhengzhou. We compared ionic compositions of PM2.5 during the period of the restriction with that immediately before the restriction and in the comparison period in 2019 to investigate the processes that caused the haze. The average concentration of PM2.5 was 83.9 µg m-3 in the restriction period, 241.8 µg m-3 before the restriction, and 94.0 µg m-3 in 2019. Nitrate was the largest contributor to the PM2.5 in all periods, with an average mass fraction of 24%-30%. The average molar concentration of total nitrogen compounds (NOx + nitrate) was 0.89 µmol m-3 in the restriction period, which was much lower than that in the non-restriction periods (1.85-2.74 µmol m-3). In contrast, the concentration of sulfur compounds (SO2 + sulfate) was 0.34-0.39 µmol m-3 in all periods. The conversion rate of NOx to nitrate (NOR) was 0.35 in the restriction period, significantly higher than that before the restriction (0.26) and in 2019 (0.25). NOR was higher with relative humidity in 40-80% in the restriction period than in the other two periods, whereas the conversion rate of SO2 to sulfate did not, indicating nitrate formation was more efficient during the restriction. When O3 occupied more than half of the oxidants (Ox = O3 + NO2), NOR increased rapidly with the ratio of O3 to Ox and was much higher in the daytime than nighttime. Therefore, haze in the restriction period was caused by increased NOx-to-nitrate conversion driven by photochemical reactions.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Aerosols/analysis , Air Pollutants/analysis , Air Pollution/analysis , China , Environmental Monitoring , Humans , Nitrates/analysis , Nitrogen Oxides/analysis , Particulate Matter/analysis , Seasons , Sulfates/analysis
12.
Journal of Environmental Sciences ; 125:553-567, 2023.
Article in English | English Web of Science | ID: covidwho-1882187

ABSTRACT

Based on the online and membrane sampling data of Yuncheng from January 1st to February 12th, 2020, the formation mechanism of haze under the dual influence of Spring Festival and COVID-19 (Corona Virus Disease) was analyzed. Atmospheric capacity, chemical composition, secondary transformation, source apportionment, backward trajectory, pollution space and enterprise distribution were studied. Low wind speed, high humidity and small atmospheric capacity inhibited the diffusion of air pollutants. Four severe pollution processes occurred during the period, and the pollution degree was the highest around the Spring Festival. In light, medium and heavy pollution periods, the proportion of SNA (SO 4 2 ???, NO 3 ??? and NH 4 + ) was 59.6%, 56.0% and 54.9%, respectively, which was the largest components of PM 2.5 ;the [NO 3 ???]/[SO 4 2 ???] ratio was 2.1, 1.5 and 1.7, respectively, indicating that coal source had a great influence;the changes of NOR (nitrogen oxidation ratio, 0.44, 0.45, 0.61) and SOR (sulphur oxidation ratio, 0.40, 0.49, 0.65) indicated the accumulation of secondary aerosols with increasing pollution. The coal combustion, motor vehicle, secondary inorganic sources and industrial sources contributed 36.8%, 26.59%, 11.84% and 8.02% to PM 2.5 masses, respectively. Backward trajectory showed that the influence from the east was greater during the Spring Festival, and the pollutants from the eastern air mass were higher, which would aggravate the pollution. Meteorological and Spring Festival had a great impact on heavy pollution weather. Although some work could not operate due to the impact of the COVID-19 epidemic, the emission of pollutants did not reduce much. ?? 2022 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V.

13.
Biosensors ; 12(5):294, 2022.
Article in English | ProQuest Central | ID: covidwho-1871131

ABSTRACT

Microfluidics devices have widely been employed to prepare monodispersed microbubbles/droplets, which have promising applications in biomedical engineering, biosensor detection, drug delivery, etc. However, the current reported microfluidic devices need to control at least two-phase fluids to make microbubbles/droplets. Additionally, it seems to be difficult to make monodispersed microbubbles from the ambient air using currently reported microfluidic structures. Here, we present a facile approach to making monodispersed microbubbles directly from the ambient air by driving single-phase fluid. The reported single-phase-fluid microfluidic (SPFM) device has a typical co-flow structure, while the adjacent space between the injection tube and the collection tube is open to the air. The flow condition inside the SPFM device was systematically studied. By adjusting the flow rate of the single-phase fluid, bubbles were generated, the sizes of which could be tuned precisely. This facile bubble generator may have significant potential as a detection sensor in detecting viruses in spread droplets or haze particles in ambient air.

14.
Frontiers in Environmental Science ; 10:13, 2022.
Article in English | Web of Science | ID: covidwho-1855339

ABSTRACT

Air quality in China has been undergoing significant changes due to the implementation of extensive emission control measures since 2013. Many observational and modeling studies investigated the formation mechanisms of fine particulate matter (PM2.5) and ozone (O-3) pollution in the major regions of China. To improve understanding of the driving forces for the changes in PM2.5 and O-3 in China, a nationwide air quality modeling study was conducted from 2013 to 2019 using the Weather Research and Forecasting/Community Multiscale Air Quality (WRF/CMAQ) modeling system. In this study, the model predictions were evaluated using the observation data for the key pollutants including O-3, sulfur dioxide (SO2), nitrogen dioxide (NO2), and PM2.5 and its major components. The evaluation mainly focused on five major regions, that is , the North China Plain (NCP), the Yangtze River Delta (YRD), the Pearl River Delta (PRD), the Chengyu Basin (CY), and the Fenwei Plain (FW). The CMAQ model successfully reproduced the air pollutants in all the regions with model performance indices meeting the suggested benchmarks. However, over-prediction of PM2.5 was noted in CY. NO2, O-3,O- and PM2.5 were well simulated in the north compared to the south. Nitrate (NO3-) and ammonium (NH4+) were the most important PM2.5 components in heavily polluted regions. For the performance on different pollution levels, the model generally over-predicted the clean days but underpredicted the polluted days. O-3 was found increasing each year, while other pollutants gradually reduced during 2013-2019 across the five regions. In all of the regions except PRD (all seasons) and YRD (spring and summer), the correlations between PM2.5 and O-3 were negative during all four seasons. Low-to-medium correlations were noted between the simulated PM2.5 and NO2, while strong and positive correlations were established between PM2.5 and SO2 during all four seasons across the five regions. This study validates the ability of the CMAQ model in simulating air pollution in China over a long period and provides insights for designing effective emission control strategies across China.

15.
European Journal of Molecular and Clinical Medicine ; 9(3):1907-1915, 2022.
Article in English | EMBASE | ID: covidwho-1812734

ABSTRACT

Introduction:COVID-19 usually manifests clinically as pneumonia with predominant imaging findings of an atypical or organizing pneumonia. The standard technique for confirming COVID-19 is molecular testing by RT-PCR however chest imaging by CT scan can show signs of pneumonia in patients with negative RT-PCR and results can be achieved significantly faster, thus offering a potential role in supporting rapid decision making. CT scan has been shown to have more sensitivity than RT-PCR and Chest X-ray. CT Severity scoring also helps in better assessment of severity of disease. Aim:To estimate typical and atypical chest CT findings in COVID-19 RTPCR positive patients for better assessment of the role of chest CT in COVID-19 management. Materials andMethods:100 patients with confirmed COVID-19 were included in study. Findings like ground glass haze (GGO), reticulations, crazy paving appearance, consolidation, subpleural curvilinear line, bronchiectasis, subpleural transparent line, vascular enlargement, mediastinal lymphadenopathy, nodules, pleural effusion, Inverted halo sign, Halo sign and pericardial effusion were documented in them and analysis was done. Results:The typical Chest CT features present in our COVID-19 cases were GGO in 93 patients (93%), reticulations in 71 patients (71%), crazy paving appearance in 59 patients (59%), consolidation in 47 patients (47%), subpleural curvilinear line in 39 patients (39%), bronchiectasis in 37 patients (37%) and subpleural transparent line in 30 patients (30%). Most cases had bilateral (98%), peripheral (57%) and patchy involvement (86%) by GGO and lower lobe predominance (55%) by consolidation. Conclusion:GGO, reticulations, crazy paving and consolidation involving bilateral lung, in a peripheral and patchy distribution with lower lobe predilection are the typical findings on chest CT in COVID-19. Chest CT scan may act as a quick diagnostic tool with high sensitivity taking into consideration that almost all COVID-19 patients demonstrate typical features.

16.
Int J Environ Res Public Health ; 19(8)2022 04 08.
Article in English | MEDLINE | ID: covidwho-1809853

ABSTRACT

Although Beijing's air quality has improved, there is still a long way to go for haze governance. In order to understand haze risk perception and related influencing factors among college students in Beijing, we developed and verified two scales, with college students as the survey object, and analyzed the theoretical framework and realistic level of haze risk perception and influencing factors through empirical research. We showed that the reliability and validity of the two scales are excellent, and they can be used as a powerful tool to measure college students' perception of haze. The haze risk perception scale (HRPS) is divided into four dimensions. The degrees of perception ranked from high to low are: direct consequences perception, indirect consequences perception, risk responsibility perception and risk source perception. The haze risk perception influencing factor scale (HRPIFS) is divided into three dimensions. The degrees of influence ranked from high to low are: personal emotion, media communication and government policy; the three influencing factors all have a significant positive correlation to overall haze risk perception, but personal emotions and media communication are only significantly related to the three dimensions of direct consequence perception, indirect consequence perception and risk source perception. Government policy is only significantly related to the three dimensions of direct consequence perception, indirect consequence perception and risk liability perception. This paper proves the important role of media in haze risk perception and puts forward some policy suggestions to guide the public to form a rational risk perception. These findings can help improve theoretical and practical research related to haze risk.


Subject(s)
Air Pollutants , Air Pollution , Air Pollutants/analysis , Air Pollution/analysis , China , Government , Humans , Perception , Reproducibility of Results , Students
17.
Atmosphere ; 13(3):22, 2022.
Article in English | Web of Science | ID: covidwho-1785505

ABSTRACT

In recent years, air pollution has become a serious threat, causing adverse health effects and millions of premature deaths in China. This study examines the spatial-temporal characteristics of ambient air quality in five provinces (Shaanxi (SN), Xinjiang (XJ), Gansu (GS), Ningxia (NX), and Qinghai (QH)) of northwest China (NWC) from January 2015 to December 2018. For this purpose, surface-level aerosol pollutants, including particulate matter (PMx, x = 2.5 and 10) and gaseous pollutants (sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO), and ozone (O-3)) were obtained from China National Environmental Monitoring Center (CNEMC). The results showed that fine particulate matter (PM2.5), coarse particulate matter (PM10), SO2, NO2, and CO decreased by 28.2%, 32.7%, 41.9%, 6.2%, and 27.3%, respectively, while O-3 increased by 3.96% in NWC during 2018 as compared with 2015. The particulate matter (PM2.5 and PM10) levels exceeded the Chinese Ambient Air Quality Standards (CAAQS) Grade II standards as well as the WHO recommended Air Quality Guidelines, while SO2 and NO2 complied with the CAAQS Grade II standards in NWC. In addition, the average air quality index (AQI), calculated from ground-based data, improved by 21.3%, the proportion of air quality Class I (0-50) improved by 114.1%, and the number of pollution days decreased by 61.8% in NWC. All the pollutants' (except ozone) AQI and PM2.5/PM10 ratios showed the highest pollution levels in winter and lowest in summer. AQI was strongly positively correlated with PM2.5, PM10, SO2, NO2, and CO, while negatively correlated with O-3. PM10 was the primary pollutant, followed by O-3, PM2.5, NO2, CO, and SO2, with different spatial and temporal variations. The proportion of days with PM2.5, PM10, SO2, and CO as the primary pollutants decreased but increased for NO2 and O-3. This study provides useful information and a valuable reference for future research on air quality in northwest China.

18.
Atmospheric Chemistry and Physics ; 22(7):4355-4374, 2022.
Article in English | ProQuest Central | ID: covidwho-1776521

ABSTRACT

Nitrate aerosol plays an increasingly important role in wintertime haze pollution in China. Despite intensive research on wintertime nitrate chemistry in recent years, quantitative constraints on the formation mechanisms of nitrate aerosol in the Yangtze River Delta (YRD), one of the most developed and densely populated regions in eastern China, remain inadequate. In this study, we identify the major nitrate formation pathways and their key controlling factors during the winter haze pollution period in the eastern YRD using 2-year (2018–2019) field observations and detailed observation-constrained model simulations. We find that the high atmospheric oxidation capacity, coupled with high aerosol liquid water content (ALWC), made both the heterogeneous hydrolysis of dinitrogen pentoxide (N2O5) and the gas-phase OH oxidation of nitrogen dioxide (NO2) important pathways for wintertime nitrate formation in this region, with contribution percentages of 69 % and 29 % in urban areas and 63 % and 35 % in suburban areas during the haze pollution episodes, respectively. We further find that the gas-to-particle partitioning of nitric acid (HNO3) was very efficient so that the rate-determining step in the overall formation process of nitrate aerosol was the oxidation of NOx to HNO3 through both heterogeneous and gas-phase processes. The atmospheric oxidation capacity (i.e., the availability of O3 and OH radicals) was the key factor controlling the production rate of HNO3 from both processes. During the COVID-19 lockdown (January–February 2020), the enhanced atmospheric oxidation capacity greatly promoted the oxidation of NOx to nitrate and hence weakened the response of nitrate aerosol to the emission reductions in urban areas. Our study sheds light on the detailed formation mechanisms of wintertime nitrate aerosol in the eastern YRD and highlights the demand for the synergetic regulation of atmospheric oxidation capacity and NOx emissions to mitigate wintertime nitrate and haze pollution in eastern China.

19.
Frontiers of Environmental Science and Engineering ; 15(3), 2021.
Article in English | GIM | ID: covidwho-1716674

ABSTRACT

This special issue contains 13 articles in various related topics including fundamentals of bioaerosol and airborne infection disease such as COVID-19, analysis and identification of bioaerosol in various environments, bioaerosol emission, transport and deposition, bioaerosol during haze episodes, airborne antibiotic resistant bacteria, impact of bioaerosol on health and environment, bioaerosol inactivation and control technologies and case studies of airborne infection and its prevention. These studies from the special issue clearly demonstrated that bioaerosol plays an important role between human health and environments, and certainly more efforts are needed to further elucidate the links.

20.
Geophysical Research Letters ; 49(2):8, 2022.
Article in English | Web of Science | ID: covidwho-1692657

ABSTRACT

Since 2013, the winter mean fine particulate matter (PM2.5) had been decreased significantly due to stringent emission controls in most of China. Nevertheless, we found a seesaw pattern of PM2.5 interannual anomalies between Beijing-Tianjin-Hebei (BTH) and Yangtze River Delta (YRD). Using the multiple linear regression method, meteorology-driven PM2.5 interannual anomalies show that the low (high) PM2.5 relative difference between BTH and YRD (RDB&Y) was associated with the strong (weak) East Asian winter monsoon (EAWM). The strong EAWM transported more air pollutants from BTH to YRD. During the COVID-19 lockdown period, due to the weak EAWM, air pollution still occurred in northern BTH, while the PM2.5 was relatively low in YRD, causing high RDB&Y values. Our results imply that the activity of EAWM and characteristics of regional transport have obvious interannual variations, which is indispensable in evaluating the achievements of PM2.5 quality management between up and downstream regions.

SELECTION OF CITATIONS
SEARCH DETAIL